Image Interrogations are now available on the Stable Horde!

The Nataili ML backend powering the workers of the Stable Horde has for a while now supported models which can perform image interrogation (AKA img2text) operations. For example captioning images or verifying whether they are displaying NSFW content or not. For almost as long, I’ve wanted to allow the AI Horde to facilitate the widespread use of those models, the same way we do for Stable Diffusion.

A primary reason for wanting this is the fact that the requirements to run a worker on the horde are fairly heavy, needing at least a mid-range GPU on your PC and most people just don’t have the capacity to provide that. Yes there is always a chance to run generations on free cloud services like Google Colaboratory, but that replaces cost with time and attention.

So I felt that being able to use models which are fairly low-powered and can run even on CPUs would provide a way for almost everyone to join the horde and start gaining kudos for themselves. The final push I needed to do this was discovering that there was useful accessibility browser extension out there which had already ceased operations because they couldn’t find cheap compute. Which is effectively what the horde has been built to do!

I was planning to get this done 2 weeks ago, but unfortunately I got massively sick during the holidays so I couldn’t do much of anything. So I moved my vacation days to the new year and finally got cracking.

Unfortunately, while the implementation of those models is much simpler than stable diffusion, preparing the AI Horde to be able to serve these was not quite as straightforward. The problem being that until now I built the horde under two core assumptions:

  1. The input is going to include a prompt of some sort on which to run inference
  2. The prompt would always expect the same type of results. Whether that is image or text.

Image interrogations flip these lot of these on their head. The input has to be a simple image, with no prompt from the user (other than payload tweaks), and the end result can differ wildly from each other, for example one being text, the other boolean and yet another returning a dictionary.

So I needed to set up a way to do that in a way that I hadn’t engineered until now, which required building the pipeline inside the AI Horde from scratch.

To make things worse, I did not want to duplicate my worker code, something which required me to implement table polymorphism within SQLAlchemy, which is a tricky subject on its own. More importantly, it requires modifying existing tables, which meant I needed to set up a development instance of the stable horde so that I can actually test the changes before going live. That in turn meant a new server, new DB, new nodes etc. Happily I had most of it ready via my Ansible code, but I still needed to tweak things to run on a new domain etc.

Finally this also required that I implement polymorphism on the bridged worker as well. The existing worker code has evolved to use quite advanced mechanism for queuing, threading etc and I didn’t want to just duplicate it. Unfortunately the code itself has become very spaghetti and is was high time I de-indented it with extreme prejudice and then implement worker polymorphism as well.

All-in all, designing, building and testing image interrogations took me the best part of a whole week.

So I am proud to announce that the new feature is now live on the stable horde!

Response Body from an image interrogation request

As always, you have to look at the api documentation for each endpoint you want to use. But very simply, you simply send an image URL you want to interrogate and specify which interrogation forms you want to use, like so:

{
  "forms": [
    {
      "name": "caption"
    },
    {
      "name": "nsfw"
    }
  ],
  "source_image": "https://i.redd.it/ggkxrfgq7u9a1.png"
}Code language: JSON / JSON with Comments (json)

It otherwise works similar top image generation from a client’s perspective, with the difference that you don’t need to use a check/ endpoint, and you can keep polling the interrogate/status/ endpoint directly. Once a form is completed, you will get a result from that form matching its type.

Currently we support three interrogation forms: caption, nsfw, and interrogation

  • Caption: Returns a string describing the image
  • NSFW: Returns a true/false boolean depending on whether the image is displaying NSFW imagery or not.
  • Interrogation: Returns a dictionary of key words best describing the image, with an accompanying confidence score. This takes the most time of all the interrogations and is rewarded accordingly in kudos.

As I mentioned before, the worker code had to be completely refactored. It now lives in a new repository as well as the nataili repo will soon turn into a pip package I can install externally, so this is in preparation of that.

To start an interrogation worker, you use the same code, but you start with a different bridge script.

./horde-interrogation_bridge.cmd -n "The Deep Questioning" --max_threads=5 --queue_size=5Code language: JavaScript (javascript)

As the models used by the interrogation worker are much more lightweight, it actually benefits more from high threads and high queue_sizes, so feel free to crank those up so that it’s best utilizing your worker. A lot of the new code changes I did to the horde also allow your worker to pick up many forms at the same time, which will cut down on the poll requests to the horde, further reducing idle time.

However be careful not to set these too high. because you’re picking up the requests in advance, nobody else will work on them until your worker gets to them. If your queue is high and your threads are low (or slow), then you’ll notice your horde performance is not going to be great.

However the result of each form will be sent back as soon as it’s done, so as it save as much time as possible.

One more thing to note is that an Interrogation worker is different from the Stable Diffusion worker. As such you cannot use the same name! However they DO use the same bridgeData.py. If you plan to run both types of workers, utilize the command line arguments to tweak the bridge settings accordingly instead of having to change your bridgeData.py all the time.

In the future I plan to further tweak the bridge so that it can run parallel with the stable diffusion worker to best utilize your space processing. I also want to tweak the model loading so that optionally you can offload the whole thing to CPU. But I need to test if the speeds for this make sense first.

Another cool possibility from this refactor is that it opens the doors for different worker types on the horde, which in turn gives me an opening I’ve been considering for a while now, which is the complete merge of the Stable and KoboldAI horde into one service. This will reduce the amount of code juggling I have to do, and hopefully simplify things for everyone with a common kudos system.

I am excited to see what use cases you all will come up with this new system!